Livestock enterprises in 2030 in the Yass district.

Phil Graham Technical Specialist Livestock systems NSW Agriculture YASS

Assumptions used

- Based on native perennial grass, clover and annual grass. Stocking rate set by a ground cover rule.
- Yass historical weather data used
- CO2 fertilisation has been included
- 30 years of potential 2030 weather is generated for the future climates.
- Based on AR5 data
- Extreme events are not as critical in livestock.

Prices and costs 12 mths

GrassGro

Run 1 livestock system at a time and compared the differences

Climate

1960 to 2014

Rainfall and temperature comparison.

	Annual rainfall mm/yr	Mean temperature C
Base 1986 to 2015	680	14.1
H2	603	15.4
C3	688	15.1
C4	730	15.1
MPI	686	15.0

Impact in 2030 of climate change on a 18 um self replacing merino, base period 1986 to 2015.

	Percentage reduction in profit \$/ha	DSE/ha – long term average	% reduction in \$/ha with genetic gain up to 2030
Base 1986 to 2015	100%	13.6	100%
H2	47%	8.7	42%
G3	43%	9.6	40%
C4	20%	11.8	13%
MPI	36%	10.1	29%

Percentage reduction from base period of 1986 to 2015

	BEEF No change	Genetic improvement up to 2030	LAMB No change	Genetic improvement up to 2030
H2	33%	33%	29%	27%
G3	32%	32%	33%	28%
C4	12%	12%	12%	5%
MP	19%	18%	22%	18%

Long term average available green herbage kg DM/ha

Variation between years in rainfall is more important then the average

C4

The value of possible adaptations

	YES	?
Change from breeding to trading		X
Use feeding areas to manage ground cover	X	
Increase reproduction rates		X
Sell wethers as lambs		X
Use a combination of strategies	X	
Genetic improvement	X	X